همراهان هیشگی مجله اینترنتی تحلیلک؛ در این مطلب می خواهیم با زندگینامه ابوالوفای بوزجانی آشنا شویم. محمد بن محمد بن یحیی بن اسماعیل بن عباس، معروف به ابوالوفای بوزجانی، ریاضیدان و اخترشناس قرن چهارم هجری قمری در اول رمضان ۳۲۸ در بوزجان (تربت جام امروزی)، در مرز خراسان و افغانستان زاده شد.
مقدمات ریاضیات زمان را، همان جا، نزد دایی و عمویش فرا گرفت. در سن ۲۰ سالگی به بغداد رفت و نزد اساتید مختلفی به تحصیل خود ادامه داد. وی پس از مدتی به یکی از دانشمندان مشهور زمان خود تبدیل شد و با دانشمندان هم عصر خود، مکاتبات علمی داشت.
به عنوان مثال : وقتی ابوریحان در خوارزم بود، برای رصد همزمان گرفتگی ماه، با بوزجانی که در بغداد بود، قرار گذاشتند تا نتیجه دو رصد که در دو نقطه مختلف انجام می گرفت را به یکدیگر اطلاع دهند تا با هم مقایسه کنند.
بوزجانی بر بسیاری از آثار پیشینیان (ایرانی و یونانی) مثل “مقدمات” اقلیدس، “جبر و مقابله” خوارزمی، “جبر” دیوفانت، “مجسطی” بطلمیوس و غیره تفسیر نوشت. خود نیز ابتکارات و نوآوری های بسیاری در هندسه و مثلثات دارد.
آن چه که در آثار ابوالوفا جلب توجه می کند توجه خاص او به کاربرد آثارش است. به طور مثال وی در کتاب حساب عملی خود، دو بخش اول را به بحث های نظری اختصاص می دهد و سپس، از بخش سوم تا هفتم، تلفیقی از ریاضیات نظری و کاربردی را مطرح می کند.
دو کتاب دیگر بوزجانی به نام های : “آن چه از علم حساب مورد نیاز کاتبان و حسابگران است” و “آن چه از اعمال هندسی مورد نیاز صنعتگران است”، نمونه های مشخصی از نوع کاربردی ریاضیات این دوره است.
بوزجانی در کتاب اعمال هندسی خود به شکل های فضایی هم می پردازد و به خصوص درباره ی رسم شکل روی کره و ساختن چند وجهی های منتظم و نیمه منتظم، مساله های متعددی را حل میکند.
در ضمن شکلهای زینتی هندسی را هم که در گل دوزی، قالی بافی و کاشی کاری، کاربرد دارند، فراموش نمیکند.
جرج سارتن نیمهی دوم سدهی چهارم قمری را “عصر ابوالوفا” می نامد. در این دوره، اروپا دچار پراکندگی، کشمکش و زد و خورد های قومی بود. اروپایی که نظام ارباب رعیتی از یک طرف و تسلط آموزش های کلیسا از طرف دیگر، راه را بر هرگونه پیشرفت دانش بسته بود.
در شرق، حکومت خلیفه ی بغداد دچار ضعف و تزلزل شده بود و مردم در فقر و نگرانی به سر می بردند.چین،هند و ژاپن نیز در رکود علمی بودند. در چنین شرایطی، در ایران وضع به گونهای دیگر بود.
در زمان تولد ابوالوفا، سامانیان بر خراسان تسلط داشتند که به زبان و ادب فارسی و سنت های ایرانی علاقمند بودند. به جز این، سامانیان نسبت به مذاهب دیگر سخت گیر نبودند و این، زمینه را برای آرامش دانشمندان و رونق گرفتن دانش فراهم آورد.
در این دوره، تعداد دکان های کتاب فروشی افزایش یافت، کتابخانه های بزرگی ساخته شدند و مدرسه هایی برای تعلیم دانش پدید آمدند. در این دوره دانشمندان بزرگی نظیر : ابوریحان بیرونی و ابنسینا میزیستهاند.
ریاضیدانان ایرانی در این دوره، تنها مترجمان و مفسران ریاضیات یونانی نبودند، بلکه خود یک دورهی کامل از تکامل ریاضیات را شکل دادند.
چهار نوشته اصلی بوزرجانی به ما رسیده است:
- آنچه از علم حساب مورد نیاز کاتبان و حسابداران است
- آنچه از اعمال هندسی مورد نیاز صنعتکاران است
- مجسطی
- اعمال هندسه
دو کتاب بوزرجانی به نام های آنچه از علم حساب مورد نیاز کاتبان و حسابداران است و آنچه از اعمال هندسی مورد نیاز صنعت کاران است نمونه های مشخصی از گونه کاربردی ریاضیات این دوره است .
بوزرجانی در حساب عملی خود دو بخش اول را به بحث های خالص اختصاص می دهد و سپس از بخش سوم تا هفتم آمیزه ای از ریاضیات نظری و کاربردی را مطرح می کند.
در کتاب اعمال هندسی در آغاز از ابزار هایی که برای ساختمان های هندسی لازم است صحبت میکند بعد ساده ترین مسائل ساختمانی هندسه را شرح میدهد و سپس به رسم شکل های پیچیده تر می پردازد .
بوزرجانی همه جا با استدلال و گاه با چند روش حل مسئله را ارئه می دهد و به کاربرد های علمی راه حل های خود هم توجه دارد.
بوزرجانی در کتاب اعمال هندسی خود به شکل های فضایی هم توجه می کند و به ویژه در باره رسم شکل روی کره و ساختن چند وجهی های منتظم و نیمه منتظم ، مسئله های متعددی را حل می کند در ضمن شکل های زینتی هندسه را هم که در گلدوزی ، قالیبافی و کاشیکاری کاربرد دارند فراموش نمیکند.
از شاهکارهای بوزرجانی کتابی است با عنوان مجسطی یا الکامل که بر مبنای مجسطی بطلمیوس نوشته است بر خلاف نظر برخی مورخان این کتاب تحریر تازه ای از کتاب بطلمیوس نیست احتمال داده میشود که زیج بوزرجانی که نسخه ای از آن بر جای نمانده است همان مجسطی ابوالوفا باشد ولی ابوریحان بیرونی آن ها را دو نوشته جداگانه دانسته است .
بوزرجانی در کتاب مجسطی خود آنچه برای توضیح حرکت های آسمانی لازم است می آورد که در واقع چیزی جز پایه گذاری کامل مثلثات نیست .
او با روش خود سینوس ۳۰ دقیقه را به کمک یک نابرابری تا ۸ رقم بعد از ممیز به دست آورده است ، سپس جدول سینوس ها را ۳۰ دقیقه به ۳۰ دقیقه تنظیم کرده و بعد از تعریف مفهوم دقیق تانژات و سکانت جدول های تانژانت را تشکیل داده است.
از کتب بوزجانی چنین بر می آید که دستگاه موضعی عدد نویسی دهدهی هندی با استفاده از ارقام در میان مردم و تجار سرزمینهای خلافت شرقی تا مدت های طولانی مورد استفاده نبوده است.
او با توجه به عادت و عرف خوانندگانی که کتاب برای آنها نوشته شده، از استفاده از ارقام کاملا پرهیز کرده است و همه اعداد و محاسبات را، که گاهی بسیار پیچیده است، تنها با واژگان بیان کرده است.
یکی از کتابهای علمی بوژگانی کتاب “فیما یحتاج الیه الصانع من الاعمال الهندسه” است، که بعد از سال ۳۷۹ نوشته شده است. بسیاری از روش های ساختن اشکال دو بعدی و سه بعدی که بوزجانی عرضه کرده، اقتباس است از آنچه در آثار اقلیدس، ارشمیدس، هرون اسکندری، تئودوسیوس و پاپوس آمده بوده است، اما بعضی از مثال ها ابتکاری است. در این اثر بوژگانی، مسائلی نیز راجع به تقسیم یک شکل به اجزایی که شرایط معینی را واجد باشند، آمده است.
بوزجانی و نجوم
اثر نجومی بزرگ بوزجانی “المجسطی” یا “الکامل” بسیار دنبالهروی مجسطی بطلمیوس است. ممکن است این اثر که فقط بخشی از آن بجای مانده است، دقیقاً همان “زیجالواضع” او یا جزئی از آن باشد که بر رصدهای خود و همکارانش مبتنی است. بنظر نمیاید که زیج باقی مانده باشد.
قبل از بوزجانی، در مثلثات کروی، تنها وسیله حل مثلثها قضیه منلائوس راجع به چهار ضلعی کامل بود که در کتب اسلامی به قاعده مقادیر شش گانه موسوم است. کاربرد این قضیه در حالت های مختلف بسیار دست و پاگیر است. بوژگانی با غنی تر ساختن ابزار مثلثات کروی، حل مسائل آنها را راحت تر کرد. وی قضیه تانژانت ها را در حل مثلث قائمالزاویه کروی بکار بست و تقدم در اثبات را بیرونی به وی نسبت داده است.
یکی از اولین اثبات های قضیه کلی سینوسها برای حل مثلث های غیر قائم الزاویه، توسط بوزجانی ابداع گردید.
ابوالوفا محمد بوزجانی در سال ۳۸۶ هجری شمسی در بغداد چشم از جهان فرو بست.
امیدواریم از مطالعه زندگینامه ابوالوفای بوزجانی لذت برده باشید.
مجله اینترنتی تحلیلک